Abstract

This study investigated a selective and sensitive theragnosis system for the specific targeting of the membrane and nuclei based on visible-light and pH-responsive TiO2-integrated cross-linked carbon dot (C-CD/TiO2) for tumor detection and controllable photothermal therapy. The cross-linking system was formed by boronate ester linkages between the TiO2-immobilized Dopa-decyl (D-CD) and zwitterionic-formed CD (Z-CD) for nuclear targeting, which showed fluorescence "off" at physiological pH. The fluorescence recovered to the "on" state in acidic cancer cells owing to cleavages of the boronate ester bonds, resulting in the disruption of the Förster resonance energy transfer that generated different CDs useful for tumor-selective biosensors and therapy. D-CD, which is hydrophobic, can penetrate the hydrophobic sites of the cell membrane; it caused a loss in the hydrophobicity of these sites after visible-light irradiation. This was achieved by the photocatalytic activity of the TiO2 modulating energy bandgap, whereas the Z-CD targeted the nucleus, as confirmed by merged confocal microscopy images. D-CD augmented by photothermal heat also exhibited selective anticancer activity in the acidic tumor condition but showed only minimal effects at a normal site at pH 7.4. After C-CD/TiO2 injection to an in vivo tumor model, C-CD/TiO2 efficiently ablated tumors under NIR light irradiation. The C-CD/TiO2 group showed up-regulation of the pro-apoptotic markers such as P53 and BAX in tumor. This material exhibited its potential as a theragnostic sensor with excellent biocompatibility, high sensitivity, selective imaging, and direct anticancer activity via photothermal therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.