Abstract

Of all the reaction oxygen species (ROS) therapeutic strategies, NIR light-induced photocatalytic therapy (PCT) based on semiconductor nanomaterials has attracted increasing attention. However, the photocatalysts suffer from rapid recombination of electron-hole pairs due to the narrow band gaps, which are greatly restricted in PCT application. Herein, Bi2 Se3 /Au heterostructured photocatalysts are fabricated to solve the problems by introducing Au nanoparticles (NPs) in situ on the surface of the hollow mesoporous structured Bi2 Se3 . Owing to the lower work function of Au NPs, the photo-induced electrons are easier to transfer and assemble on their surfaces, resulting in the increased separation of the electron-hole pairs with efficient ROS generation. Besides, Bi2 Se3 /Au heterostructures also enhance the photothermal efficiency due to the effective orbital overlaps with accelerated electron migrations according to density functional theory calculations. Moreover, the PLGA-PEG and the doxorubicin (DOX) are introduced for photothermal-triggered drug release in the system. The Bi2 Se3 /Au heterostructures also displays excellent infrared thermal (IRT) and computed tomography (CT) dual-modal imaging property for promising cancer diagnosis. Collectively, Bi2 Se3 /Au@PLGA-PEG-DOX exhibits prominent tumor inhibition effect based on synchronous PTT, PCT and chemotherapy triggered by NIR light for efficient antitumor treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.