Abstract

ABSTRACTThe present study presents a novel method employing Near Infrared Spectroscopy (NIR) for detection of the use of calcium carbide in artificial ripening of mangoes. Use of calcium carbide has been banned in artificial ripening of fruits as it contains traces of arsenic. Mango samples were ripened artificially using calcium carbide and compared with naturally ripened mangoes using NIR spectroscopic wavelength ranging from 600 to 1100 nm. The captured NIR spectra from mango samples were analysed using multivariate methods including principal component analysis, particle least square and successive projection algorithm. The obtained results showed distinguishing zones for naturally and artificially ripened mangoes. Furthermore, the arsenic content was obtained through ICP-MS analysis, and it was found that mangoes ripened artificially using calcium carbide have a higher content of arsenic. Hence, arsenic was used as a principal component in the analysis. The developed method is not unique to samples that were grown in any particular region or year as it and can be used universally as NIR will give the distinguishing comparison between naturally- and artificially ripened mangoes. This method is simple, non-invasive, non-destructive and rapid for detection of use of calcium carbide in the artificial ripening of mangoes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call