Abstract
Combined therapy system has become an efficient strategy to overcome drug resistance and strengthen therapeutic effects. Herein, an efficient NIR-/pH-triggered dual-drug-loaded nanoplatform was designed for combined chemo-photothermal therapy. The hydrophobic anticancer drug bortezomib (BTZ) was first loaded in mesoporous polydopamine nanospheres (MPDAs) through the acid-sensitive borate ester bond. Afterward, pH-responsive carboxymethyl chitosan (CMCS) conjugated on the surface of MPDA could capture another anticancer drug doxorubicin (DOX) and exhibited controlled release behavior in an acidic tumor microenvironment. Meanwhile, under NIR laser irradiation, hyperthermia produced by the photothermal conversion agent MPDA could efficiently ablate cancer cells and further promote drug release. In vitro and in vivo experiments emphasized that the synthesized MPDA-BTZ@CMCS-DOX nanostructure exhibited efficient accumulation in the tumor site, resulting in sustained release of BTZ and DOX and realizing NIR-/pH-triggered chemotherapy and photothermal synergistic ablation of cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.