Abstract

The near-infrared (NIR) light in the wavelength range of 780−1700 nm is regarded as transparency therapeutic window for light-activated delivery system in vivo due to the deep tissue penetration and minimum cellular damage of it. Numerous reports about NIR light-sensitive nanocarriers have emerged in the past few years. Here, strategies for the design and fabrication of nanocarriers for NIR light-controlled release are reviewed, which are based on three triggering mechanisms: (1) photoreactions of chromophores, including NIR light-induced photoreactions and upconversion nanoparticles (UCNPs)-mediated photochemical reactions; (2) photothermal effect, triggered by inorganic or organic photothermal conversion agents (PCAs) with the excitation of NIR light; (3) photo-oxidation, induced by reactive oxygen species (ROS) generated by photosensitizers under NIR light radiation. Finally, the challenges and perspectives of NIR light-sensitive nanocarriers for future development are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call