Abstract

Various nanoplatforms have been developed to visualize intracellular microRNAs (miRNAs) because of their clinical significance in tumor progression and diagnosis. However, the diffusion-limited motion of the nanoplatforms penalizes the miRNA imaging efficiency in cells. Herein, we fabricated a near-infrared (NIR) light-propelled Janus-based nanoplatform to advance the imaging response. The Janus nanomotor covered with an Au half-shell was loaded by the endocytosis adjuvant of the MnO2 nanosheet for delivering a miRNA-responsive hQN (hairpin DNA quadrangular nanostructure) probe with a catalyzed hairpin assembly (CHA). Once the nanoplatform entered into cells, the MnO2 nanosheet was degraded to Mn2+ by endogenous fuels (such as glutathione) to release the hQN probe. The NIR light irradiation of the nanoplatform generated a heat gradient and thus propelled motion of the nanoplatform. This process accelerated the intracellular reaction of the hQN probe with miRNAs to trigger the cascade CHA amplification with an enhanced fluorescence readout.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.