Abstract

Using atom transfer radical polymerization (ATRP) and macromolecular azo coupling reaction, both o-nitrobenzyl (ONB) group and azobenzene group were efficiently incorporated into the center of the amphiphilic diblock copolymer chain. The prepared diblock copolymer was well characterized by UV–vis, 1H NMR, and GPC methods. Self-assembly of the amphiphilic copolymer in selected solvents can result in uniform self-assembly aggregates. In the presence of external stimuli [upconversion nanoparticles (UCNPs)/NIR light or enzyme], the amphiphilic diblock copolymer chain could be broken by the cleavage of ONB or azobenzene group, which would lead to the disruption of the self-assembly aggregates. This photo- and enzyme-triggered disruption process was proved by using transmission electron microscopy (TEM) and GPC method. Fluorescence emission spectra measurements indicated that the release of Nile red, a hydrophobic dye, encapsulated by the self-assembly aggregates, could be successfully realized under the NIR light and enzyme stimuli. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2450–2457

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.