Abstract

Optical imaging in the second near-infrared (NIR-II, 900-1700nm) window has been extensively investigated for bioimaging. However, a strong autofluorescence background from real-time excitation light significantly reduces the images' quality of NIR-II fluorescence (FL) imaging. To resolve this issue, a NIR-II self-luminous small molecule (CLPD) based on bioluminescence (BL) resonance energy transfer (BRET) mechanism is first developed. The reactive oxygen species (ROS) can trigger NIR-II BL and reduce the NIR-II FL signals of the CLPD simultaneously, enabling ROS-correlated ratiometric BL/FL imaging. CLPD is used for high-contrast NIR-II BL imaging of osteoarthritis as well as guiding the treatment process by ratiometric BL/FL imaging. Moreover, CLPD is applied for NIR-II BL imaging of tumor triggered by the generated ROS during PDT. A correlation between the ratiometric NIR-II BL/FL signal and tumor size is constructed, providing a trustworthy tool for early assessment of PDT effect. Overall, this study presents a novel NIR-II self-luminous small molecular probe for in vivo imaging and provides a strategy for design a self-evaluation system of therapeutic effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.