Abstract
There are tricky challenges in tumor therapy due to the hypoxic tumor microenvironment, inevitably inhibiting the treatment efficacy of the traditional photodynamic therapy (PDT), radiation therapy (RT), and sonodynamic therapy (SDT). Herein, to overcome tumor hypoxia limitation, we constructed a near-infrared II (NIR-II) light-triggered thermodynamic therapy (TDT) nanoplatform of Au@mSiO2-AIPH@PCM/PEG (ASAPP) by integrating the Au nanorods (Au NRs) and thermally activated alkyl free radical-releasing molecules (AIPH). Au NRs@mSiO2 was used as a photothermally responsive material and AIPH carrier, and the hot-melt phase-change material (PCM) was used as a capping agent to prevent leakage of AIPH during blood circulation. Upon NIR-II light irradiation, heat-triggered free radical release from AIPH was successfully achieved for killing cancer cells in vitro and in vivo without oxygen dependence, leading to synergistically enhanced antitumor therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.