Abstract

Focused ultrasound (FUS)-induced blood–brain barrier (BBB) opening is crucial for enhancing glioblastoma (GBM) therapies. However, an in vivo imaging approach with a high spatial–temporal resolution to monitor the BBB opening process in situ and synchronously is still lacking. Herein, we report the use of indocyanine green (ICG)-dopped microbubbles (MBs-ICG) for visualizing the FUS-induced BBB opening and enhancing the photothermal therapy (PTT) against GBM. The MBs-ICG show bright fluorescence in the second near-infrared window (NIR-II), ultrasound contrast, and ultrasound-induced size transformation properties. By virtue of complementary contrast properties, MBs-ICG can be successfully applied for cerebral vascular imaging with NIR-II fluorescence resolution of ∼168.9 μm and ultrasound penetration depth of ∼7 mm. We further demonstrate that MBs-ICG can be combined with FUS for in situ and synchronous visualization of the BBB opening with a NIR-II fluorescence signal-to-background ratio of 6.2 ± 1.2. Finally, our data show that the MBs-ICG transform into lipid-ICG nanoparticles under FUS irradiation, which then rapidly penetrate the tumor tissues within 10 min and enhance PTT in orthotopic GBM-bearing mice. The multifunctional MBs-ICG approach provides a novel paradigm for monitoring BBB opening and enhancing GBM therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.