Abstract

Due to the "Achilles' heels" of hypoxia, complicated location in solid tumor, small molecular photosensitizers with second near-infrared window (NIR-II) fluorescence, type-I photodynamic therapy (PDT), and photothermal therapy (PTT) have attracted great attention. However, these photosensitizers are still few but yet challenging. Herein, an "all in one" NIR-II acceptor-donor-acceptor fused-ring photosensitizer, Y6-Th, is presented for the in-depth diagnosis and efficient treatment of cancer. Benefiting from the strong intramolecular charge transfer, promoted highly efficient intersystem crossing, largely p-conjugated fused-ring structure, and reduced planarity, the fabricated nanoparticles (Y6-Th nanoparticles) can emit NIR-II fluorescence with the peak located at 1020nm, exclusively generate O2•- for type-I PDT, and display excellent PTT performance under an 808nm laser stimulation. These characteristics make Y6-Th a distinguished NIR-wavelength-triggered phototheranostic agent, which can effectively therapy the hypoxic tumor using NIR-II-fluorescence-guided type-I PDT/PTT. This work provides a valuable guideline for fabricating high-performing NIR-II emissive superoxide radical photogenerators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call