Abstract

The influence of calcination temperature (500, 600 and 700 °C) on NiO–MgO solid solution formation and the performance of the resulting catalysts in CO2 reforming of methane was studied. The solid solutions and resulting catalysts were characterized by Brunauer–Emmett–Teller, XRD, temperature-programmed reduction (TPR), TEM and thermal gravimetric analysis techniques. Catalytic performance tests were carried out under 550–750 °C, 1 bar, CO2/CH4 = 1–3 mol/mol and space velocities of 30,000–120,000 ml/(h gcat). The catalyst calcined at 600 °C exhibited the best performance in terms of catalytic activity and stability and showed lowest amount of coke formation after 50 h-on-stream. The effect of calcination temperature on degree of NiO–MgO solid solution formation was demonstrated by both XRD and TPR profiles. The 600 °C calcination temperature was found to be an optimum as it caused modest NiO–MgO interaction, which is responsible for complete formation of the NiO–MgO solid solution with high nickel dispersion and resistant to coke formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.