Abstract

Checksum and residue checking accelerators were implemented on a Nios II core-based platform according to component method, in which the corresponding hardware was implemented with HDL coding, a custom instruction method, in which the instruction set of the processor was extended, and the C2H method, in which the corresponding logic was automatically created by the C2H compiler. The processing results from each accelerator for each algorithm were then examined and compared. The results of the comparison showed that the accelerator implemented with the C2H method is the fastest in terms of the execution time, and the accelerator with custom instruction requires the least add-on from the viewpoint of add-on hardware.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.