Abstract

AbstractMetal nanowires are twisted to form yarns that are strong (0.4 to 1.1 GPa), pliable, and more conductive (3 × 106 S m−1) than carbon nanotube yarns. Niobium nanowire fibers are extracted by etching a copper‐niobium nano‐composite material fabricated using the severe plastic deformation process. When impregnated with paraffin wax, the niobium (Nb) nanowire yarns produce fast rotational actuation as the wax is heated. The heated wax expands, untwisting the yarn, which then re‐twists upon cooling. Normalized to yarn length, 12 deg mm−1 of torsional rotation was achieved along with twist rates in excess of 1800 rpm. Tensile modulus of 19 ± 5 GPa was measured for the Nb yarns, which is very similar to those of carbon multiwalled nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.