Abstract

Abstract Niobium is a critical metal in high demand because of technological advances and the supply risk created by the fact that over 90% of its production is by a single country (Brazil). In this paper, we review the geology of the deposits that are currently being mined and other potentially economic deposits as well as develop models for their genesis. With the exception of the Lovozero deposit (Russia), which is hosted by a layered silica-undersaturated alkaline igneous complex, all the deposits that are currently being mined for niobium are hosted by carbonatites, and most of the deposits with economic potential are also hosted by these rocks. Niobium owes its concentration in carbonatites and alkaline silicate rocks to its highly incompatible nature and the small degree of partial melting of the mantle required to generate the corresponding magmas. The primary control on the concentration of niobium to economic levels in alkaline silicate magmas is fractional crystallization, partly prior to but mainly after emplacement. In the case of silica-undersaturated magmas, the final residue saturates in minerals like eudialyte and loparite to form niobium-rich horizons in the layered complexes that crystallize from these magmas. The final residue, in the case of silica-saturated magmas, crystallizes the pegmatites that are the hosts to the economic niobium mineralization, which commonly takes the form of pyrochlore. In contrast, carbonatitic magmas undergo little to no fractional crystallization prior to emplacement. Moreover, fractional crystallization on emplacement has minimal impact on the concentration of niobium to economic levels. Instead, we propose that the metasomatic interaction of the carbonatitic magmas with their hosts to form rocks like phlogopitite (glimmerite) consumes much of the magma, leaving behind a phoscoritic residue from which pyrochlore crystallizes in amounts sufficient to form economic deposits. Although many niobium deposits display evidence of intense hydrothermal alteration, during which there can be major changes in the niobium mineralogy, the extremely low solubility of niobium in aqueous fluids at elevated temperature precludes significant mobilization and, thus, enrichment of the metal by hydrothermal fluids. However, weathering of carbonatite-hosted niobium deposits leads to supergene enrichment (due largely to the dissolution of the carbonate minerals) that can double the niobium grade and make subeconomic deposits economic. Pyrochlore is the principal niobium mineral in these laterite-hosted deposits, although its composition differs considerably from that in the primary mineralization. This paper evaluates the processes that appear to be responsible for the genesis of niobium ores and provides a framework that we hope will guide future in-depth studies of niobium deposits and lead to more effective strategies for their successful exploration and exploitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call