Abstract
Foam cells play a pivotal role in the progression of atherosclerosis progression by triggering inflammation within arterial walls. They release inflammatory molecules that attract additional immune cells, leading to further macrophage recruitment and plaque development. In this study, we develop an osteopontin (OPN) antibody-conjugated niobium carbide (Nb2C-aOPN) MXenzyme designed to selectively target and mildly ablate foam cells while reducing inflammation in the plaque microenvironment. This approach utilizes photonic hyperthermia to decrease plaque size by enhancing cholesterol regulation through both passive cholesterol outflow and positive cholesterol efflux. Nb2C-aOPN MXenzyme exhibits multiple enzyme-mimicking properties, including catalase, superoxide dismutase, peroxidase and glutathione peroxidase, and acts as a scavenger for reactive oxygen and nitrogen species. The inhibition of reactive oxygen and nitrogen species synergizes with photothermal ablation to promote positive cholesterol efflux, leading to reduced macrophage recruitment and a shift in macrophage phenotype from M1 to M2. This integrative strategy on cholesterol regulation and anti-inflammation highlights the potential of multifunctional 2D MXenzyme-based nanomedicine in advancing atherosclerotic regression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.