Abstract

In the present study, the corrosion resistance of a new niobium oxide/acrylate hybrid nanocomposite coating doped with niobia nanofibers is investigated. Nanofibers were initially synthesized from niobium(V) chloride precursor in a novel autoclave approach before fabricating the base coating from a two-step process involving the syntheses of acrylate resin via free radical polymerization and niobium oxide gel from niobium ethoxide via a sol–gel technique. Variants of the synthesized nanocomposite coating were incorporated with varying concentrations of niobia nanofibers before spin-coating on Q235 steel substrates to inhibit corrosive electrolytic ion percolation and further enhance corrosion resistance when treated with chloride-enriched corrosive media. The corrosion resistance of these nanocomposite coatings increased with nanofiber content up to an optimum concentration due to the corrosion-inhibiting and protective effects of niobium barrier layers within these coatings. The presence of the niobia nanofibers also promoted improved surface contact angle and toughened mechanical strengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.