Abstract
A simple and cost-effective gel-casting technique is developed and optimized to fabricate NiO/stabilized yttria–zirconia (YSZ) anode-supported solid oxide fuel cells (SOFCs). The effect of ammonium poly-(methacrylate) (PMAA) dispersant and pH on the zeta potential of YSZ and NiO particles and the viscosity of the NiO/YSZ slurries is studied in detail. The results show that the absolute zeta potential of YSZ and NiO particles reaches a maximum value at pH value ∼10 and the viscosity of the NiO/YSZ slurry is lowest when the PMAA dispersant content is 1.5 wt.%. A gel-cast NiO/YSZ anode-supported button cell with a spin-coated, thin, YSZ electrolyte film (∼9 μm) and a La 0.72Sr 0.18MnO 3− δ (LSM)/YSZ composite cathode gives a peak power output of 1.07 and 0.65 W cm −2 at 900 and 800 °C under humidified hydrogen and air. The effect of a graphite pore-former in the gelation and microstructure of NiO/YSZ anode substrates is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.