Abstract

Two NiO products with different microstructures have been obtained using a traditional NaOH-induced aqueous-phase precipitation and a homogeneous precipitation in choline chloride/urea mixture-based deep eutectic solvent (DES), respectively. The synthesis processes play a key role in the structure construction of NiO precursors as well as the final NiO products, and possible formation mechanisms are proposed. The DES-based homogeneous precipitation method provides plentiful nucleation sites, moderate crystal growth process and possible template effect, which could conduce to the production of flower-like NiO with continuously self-supporting mesoporous structure assembled by tiny grains. The flower-like NiO electrode exhibits higher current density, faster charge-transfer process, better electrode accessibility, and improved stability for methanol electro-oxidation in an electrolyte of 0.1 M CH3OH + 0.005 M KOH than the disorderly aggregated NiO nanoparticles. We believe that the DES-based homogeneous precipitation method can provide an effective approach to fabricate advanced electrocatalyst materials with homogeneous and well-assembled microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.