Abstract

We have investigated environmental conditions that might be of importance for the polymerization of the ninth component (C9) of human complement. In disagreement with earlier reports summarized by Tschopp et al. [Tschopp, J., Müller-Eberhard, H. J., & Podack, E. R. (1982) Nature (London) 298, 534-538] we find no evidence for significant aggregation or loss of hemolytic activity of C9 when incubated at 37 degrees C even after 12 days of incubation. Higher temperatures cause denaturation of the protein and formation of stringlike aggregates. In contrast, short-term proteolysis with 1% (w/w) trypsin at room temperature causes rapid polymerization of part of the C9 into tubular structures (poly-C9), and the remainder of the monomeric C9 is digested. This polymerization reaction is inhibitable by trypsin inhibitor; alpha-thrombin and proteinase K are ineffective in creating polymers. A second discrepancy to the earlier reports is our finding that monomeric C9 immediately interacts with small unilamellar lipid vesicles (SUV) without a required heating step. As a result of this interaction about half of the C9 aggregates to form strings and tubules, and these aggregates cause agglutination of vesicles. The other half of the C9 associates with a second population of SUV without causing a change in Stokes' radius of these vesicles, and no proteinaceous structures are detectable on the vesicle surface by electron microscopy. When these two vesicle populations are tested for their membrane integrity, no release of an encapsulated fluorescent marker can be detected, nor is there leakage of potassium ions across the bilayer membrane since a membrane diffusion potential can be developed.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.