Abstract
Cybersecurity insurance is one of the important means of cybersecurity risk management and the development of cyber insurance is inseparable from the support of cyber risk assessment technology. Cyber risk assessment can not only help governments and organizations to better protect themselves from related risks, but also serve as a basis for cybersecurity insurance underwriting, pricing, and formulating policy content. Aiming at the problem that cybersecurity insurance companies cannot conduct cybersecurity risk assessments on policyholders before the policy is signed without the authorization of the policyholder or in legal, combining with the need that cybersecurity insurance companies want to obtain network security vulnerability risk profiles of policyholders conveniently, quickly and at low cost before the policy signing, this study proposed a non-intrusive network security vulnerability risk assessment method based on ensemble machine learning. Our model uses only open source intelligence and publicly available network information data to rate cyber vulnerability risk of an organization, achieving an accuracy of 70.6% compared to a rating based on comprehensive information by cybersecurity experts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.