Abstract
Foragers make decisions based on cues, information collected from their environment, processed into strategic behaviours. This information, processed in multiple regions of the brain, ultimately result in the production of stress hormones and visible changes in behaviour of animals – both reflexively to avoid depredation and strategically to avoid an encounter with the predator. In a common-garden experiment we tested how imperfect information from visual cues of a predator impacts foraging and apprehension of a desert rodent, the Egyptian gerbil (Gerbillus pyramidum). The gerbils were exposed to predation by barn owls (Tyto alba), one camouflaged on dark nights using black dye. Gerbils’ response to the owls was measured using patch-use measured in giving-up densities (GUDs) and time spent in vigilance activity. Owl lethality was extrapolated from mean times spent in attacks and number of attempted strikes. Dyed owls attack-rate was lower and attack duration greater than those of the white owls. During the full moon, when dyed owls were visible, gerbils responded with extreme vigilance and minimal foraging (high GUDs). During the new moon when the owls were most stealthy, the gerbils showed low vigilance coupled with a similar high GUD. The inconsistency between gerbils’ foraging and vigilance behaviours, suggest a likely mismatch between perceived risk and actual measurement of predator lethality gathered by the gerbils’ observations in real time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.