Abstract

I review the early (1885–1975) and more recent history of dynamical systems theory, identifying key principles and themes, including those of dimension reduction, normal form transformation and unfolding of degenerate cases. I end by briefly noting recent extensions and applications in nonlinear fluid and solid mechanics, with a nod toward mathematical biology. I argue throughout that this essentially mathematical theory was largely motivated by nonlinear scientific problems, and that after a long gestation it is propagating throughout the sciences and technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call