Abstract

In the past two decades, high-amplitude electromagnetic outbursts have been detected from dormant galaxies and often attributed to the tidal disruption of a star by the central black hole1,2. X-ray emission from the Seyfert 2 galaxy GSN069 (2MASX J01190869-3411305) at a redshift of z=0.018 was first detected in July 2010 and implies an X-ray brightening by a factor of more than 240 over ROSAT observations performed 16years earlier3,4. The emission has smoothly decayed over time since 2010, possibly indicating a long-lived tidal disruption event5. The X-ray spectrum is ultra-soft and can be described by accretion disk emission with luminosity proportional to the fourth power of the disk temperature during long-term evolution. Here we report observations of quasi-periodic X-ray eruptions from the nucleus of GSN069 over the course of 54days, from December 2018 onwards. During these eruptions, the X-ray count rate increases by up to two orders of magnitude with an event duration of just over an hour and a recurrence time of about nine hours. These eruptions are associated with fast spectral transitions between a cold and a warm phase in the accretion flow around a low-mass black hole (of approximately 4×105solar masses) with peak X-ray luminosity of about 5×1042erg per second. The warm phase has kT (where T is the temperature and k is the Boltzmann constant) of about 120electronvolts, reminiscent of the typical soft-X-ray excess, an almost universal thermal-like feature in the X-ray spectra of luminous active nuclei6-8. If the observed properties are not unique to GSN069, and assuming standard scaling of timescales with black hole mass and accretion properties, typical active galactic nuclei with higher-mass black holes can be expected to exhibit high-amplitude optical to X-ray variability on timescales as short as months or years9.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call