Abstract
The problem of avoidance of a single permutation pattern or of a pair of patterns of length four has been well studied. Less is known concerning the avoidance of three 4-letter patterns. In this paper, we determine up to symmetry all triples of 4-letter patterns such that the number of members of Sn avoiding any one of them is given by the binomial transform of Fine’s sequence (see A033321 in OEIS). We make use of both algebraic and combinatorial proofs in order to establish our results. In a couple of cases, we introduce certain auxiliary statistics on Sn which give rise to a system of functional equations that can be solved using the kernel method. In another case, a direct bijection is defined between members of the avoidance class in question and the set of skew Dyck paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.