Abstract

Herein, a facile glycine combustion method was utilized to prepare a series of Ni and Mn based single/double metal oxides, which were evaluated as catalysts for low temperature selective catalytic reduction of NO with NH3. The NiMn-T samples presented superior catalytic performance especially for NiMn-400, with ∼100 % NOx conversion, >85 % N2 selectivity within 90-300 °C, and better SO2 resistance. The superior catalytic activity might be related to the coordination of Ni and Mn, which afforded higher Mn4+/Mnn+ ratio, larger SBET, more suitable acid site amounts and redox capacity. The improved SO2 resistance of NiMn-400 catalyst can be ascribed to the less ammonium (bi)sulfate deposition and metal sulfation. In-situ DRIFTS revealed that the Ni doping could deliver more reactive species (NH2, monodentate nitrite, bidentate nitrate), and the surface acidity is less affected by SO2, which can account for the enhanced low temperature activity and SO2 resistance of the NiMn-400 catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.