Abstract

Abstract PURPOSE Intratumor heterogeneity is frequent in glioblastoma (GB), giving rise to the tumor’s resistance to standard therapies and, ultimately, poorer clinical outcomes. Yet heterogeneity is often not quantified when assessing the genomic or methylomic profile of a tumor, when a single tissue sample is analyzed. This study proposes a novel approach to non-invasively characterize heterogeneity across glioblastoma using deep learning analysis MRI scans, using MGMT promoter methylation (MGMTpm) as a test-case, and validates the imaging-derived heterogeneity maps with MGMTpm heterogeneity measured via multiple tissue samples. METHODS Multi-parametric MRI (mpMRI) scans (T1, T1-Gd, T2, T2-FLAIR) of 181 patients with newly diagnosed glioblastoma, who underwent surgical tumor resection and had MGMT methylation assessment results, were retrospectively collected. We trained a 5-fold cross-validated deep convolutional neural network with six convolutional layers for a discovery cohort of 137 patients by placing overlapping regional patches over the whole tumor on mpMRI scans to capture spatial heterogeneity of MGMTpm status in different regions within the tumor. Our approach effectively hypothesized that despite heterogeneity in the training examples, dominant imaging patterns would be captured by deep learning. Trained model was independently applied to an unseen replication cohort of 44 patients, with multiple tissue specimens chosen from different spatial regions within the tumor, allowing us to compare imaging- and tissue-based MGMTpm estimates. RESULTS Our model yielded AUC of 0.75 (95% CI: 0.65–0.79) for global MGMT status prediction, which reflected the heterogeneity in MGMTpm, but also that a dominant imaging pattern of MGMT methylation seemed to emerge. In methylated patients with multiple tissue samples, a significant Pearson's correlation coefficient of 0.64 (p< 0.05) was found between imaging-based heterogeneity maps and MGMTpm heterogeneity. CONCLUSION A novel method based on mpMRI and deep neural networks yielded imaging-based heterogeneity maps that strongly associated with intratumor molecular heterogeneity in MGMT promoter methylated tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.