Abstract

Abstract INTRODUCTION The goal of this study was to characterize progressive and pseudoprogressive GBM using multi-parametric hyperpolarized (HP)-13C / 1H MRI. METHODS Dynamic HP-13C MRI was acquired from 13 patients with progressive GBM [patients (scans): 2(3) IDH-mutant; 11(13) IDH-wildtype] and 2 IDH-wildtype patients (3 scans) demonstrating pseudo-progression following intravenous injection of HP [1-13C]pyruvate. Frequency-selective echo-planar imaging (3s temporal resolution, 3.38 cm3 spatial resolution) captured [1-13C]pyruvate metabolism to [1-13C]lactate and 13C-bicarbonate in the brain. Dynamic 13C data were kinetically modeled to obtain the pyruvate-to-lactate conversion rate constant k PL and temporally summed to calculate 13C-metabolite percentiles and ratios (linearly interpolated 2x in-plane). 1H imaging included T2, post-Gd T1, perfusion (nCBV, %recovery), diffusion (ADC), and lactate-edited spectroscopy (CNI, choline-to-NAA index; 1H-lactate). The normal-appearing white matter (NAWM), non-enhancing lesion (NEL), and contrast-enhancing lesion (CEL) were segmented from 1H images. 13C-resolution masks were iteratively applied on a voxel-wise basis to evaluate 1H imaging parameters within each ROI and multi-parametric data were collectively evaluated using a mixed effects model in R. RESULTS Progressive IDH-mutant GBM compared to wildtype counterparts displayed increased perfusion %recovery (p < 0.001) and k PL (p < 0.01), together with reduced 1H-lactate (p < 0.001) and pyruvate percentile (p < 0.01), in the T2 lesion. Among IDH-wildtype progressive GBM, the CEL was distinguished from NEL/NAWM by increased nCBV (p < 0.05/0.001), 1H-lactate (p < 0.05/0.001); and decreased bicarbonate / lactate (p < 0.05/0.001). The CEL and NEL were collectively distinguished from NAWM by elevated CNI (p < 0.001/0.001), ADC (p < 0.05/0.001), pyruvate percentile (p < 0.001/0.001), lactate percentile (p < 0.001/0.001), and relative lactate / pyruvate (p < 0.001/0.05). Psuedo-progressive IDH-wildtype GBM displayed lower k PL (T2 Lesion; p < 0.01) and nCBV (CEL; p < 0.01) compared to progressive GBM. CONCLUSION HP-13C parameters can potentially augment proton imaging and demonstrated Warburg-associated metabolic alterations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call