Abstract

Abstract PURPOSE Machine learning (ML) technologies have demonstrated highly accurate prediction of glioma grade, though it is unclear which methods and algorithms are superior. We have conducted a systematic review of the literature in order to identify the ML applications most promising for future research and clinical implementation. MATERIALS AND METHODS A literature review, in agreement with PRISMA, was conducted by a university librarian in October 2020 and verified by a second librarian in February 2021 using four databases: Cochrane trials (CENTRAL), Ovid Embase, Ovid MEDLINE, and Web of Science core-collection. Keywords and controlled vocabulary included artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and glioblastoma. Screening of publications was done in Covidence, and TRIPOD was used for bias assessment. RESULTS The search identified 11,727 candidate articles with 1,135 articles undergoing full text review. 86 articles published since 1995 met the criteria for our study. 79% of the articles were published between 2018 and 2020. The average glioma prediction accuracy of the highest performing model in each study was 90% (range: 53% to 100%). The most common algorithm used for cML studies was Support Vector Machine (SVM) and for DL studies was Convolutional Neural Network (CNN). BRATS and TCIA datasets were used in 47% of the studies, with the average patient number of study datasets being 186 (range: 23 to 662). The average number of features used in machine learning prediction was 55 (range: 2 to 580). Classical machine learning (cML) was the primary machine learning model in 68% of studies, with deep learning (DL) used in 32%. CONCLUSIONS Using multimodal sequences in ML methods delivers significantly higher grading accuracies than single sequences. Potential areas of improvement for ML glioma grade prediction studies include increasing sample size, incorporating molecular subtypes, and validating on external datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call