Abstract

Control phase plays a critical role in the performance of time-division multiple access (TDMA)-based networks. Within cluster-based wireless sensor networks, a nimble and adaptive control phase algorithm called NACPA to control the control phase of TDMA-based medium access control (MAC) in cluster-based sensor networks is proposed. This algorithm takes advantage of the wireless sensor hardware feature and presents a more accurate although simpler means to calculate the number of contention nodes in one round. On the basis of the analysis of the features of contention probability against the number of contention nodes, this algorithm can significantly reduce its computation complexity, rendering it practically feasible for resource-constrained sensor networks. Detailed analytical evaluation against two typical MAC algorithms (polling and carrier sense multiple access) is presented both in terms of packet transmission delay and average channel utilisation, the results of which, while also matching the simulation observation, have shown its effectiveness and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call