Abstract
In [S. Akbari, J. Algebra 217 (1999) 422–433] it has been conjectured that if D is a noncommutative division ring, then D ∗ contains no nilpotent maximal subgroup. In connection with this conjecture we show that if GL n ( D) contains a nilpotent maximal subgroup, say M, then M is abelian, provided D is infinite. This extends one of the main results appeared in [S. Akbari, J. Algebra 259 (2003) 201–225, Theorem 4].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.