Abstract
We characterize the structure of linear semigroups satisfying certain global and local nilpotence conditions and deduce various Engel-type results. For example, using a form of Zel'manov's solution of the restricted Burnside problem we are able to show that a finitely generated residually finite group is nilpotent if and only if it satisfies a certain 4-generator property of semigroups we call WMN. Methods of linear semigroups then allow us to prove that a linear semigroup is Mal'cev nilpotent precisely when it satisfies WMN. As an application, we show that a finitely generated associative algebra is nilpotent when viewed as a Lie algebra if and only if its adjoint semigroup is WMN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.