Abstract
An extension of ℝ (and *ℝ) with nilpotent infinitesimals (e.g. h ≠ 0 but h 2 = 0) is presented in order to obtain results similar to KockLawvere’s synthetic differential geometry [3], but in a classical and not intuitionistic context. The same extension can be used to add new infinitesimal points to spaces similar to Chen’s ones [1]. In the category of extended spaces we can develop differential geometry not only of usual manifolds but also of infinite dimensional spaces, without coordinates and with a strong geometric intuition, that is in a way that we will call “synthetic”.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.