Abstract

We derive the nilpotent (anti-)BRST and (anti-)co-BRST symmetry transformations for the system of a toy model of Hodge theory (i.e. a rigid rotor) by exploiting the (anti-)BRST and (anti-)co-BRST invariant restrictions on the (anti-)chiral supervariables that are defined on the appropriately chosen [Formula: see text]-dimensional super-submanifolds of the general [Formula: see text]-dimensional supermanifold on which our system of a one [Formula: see text]-dimensional (1D) toy model of Hodge theory is considered within the framework of the augmented version of the (anti-)chiral supervariable approach (ACSA) to Becchi–Rouet–Stora–Tyutin (BRST) formalism. The general [Formula: see text]-dimensional supermanifold is parametrized by the superspace coordinates [Formula: see text], where [Formula: see text] is the bosonic evolution parameter and [Formula: see text] are the Grassmannian variables which obey the standard fermionic relationships: [Formula: see text], [Formula: see text]. We provide the geometrical interpretations for the symmetry invariance and nilpotency property. Furthermore, in our present endeavor, we establish the property of absolute anticommutativity of the conserved fermionic charges which is a completely novel and surprising observation in our present endeavor where we have considered only the (anti-)chiral supervariables. To corroborate the novelty of the above observation, we apply this ACSA to an [Formula: see text] SUSY quantum mechanical (QM) system of a free particle and show that the [Formula: see text] SUSY conserved and nilpotent charges do not absolutely anticommute.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call