Abstract

Suppose that a finite group G admits a Frobenius group of automorphisms BC of coprime order with kernel B and complement C such that CG(C) is abelian. It is proved that if B is abelian of rank at least two and \({[C_G(u), C_G(v),\dots,C_G(v)]=1}\) for any \({u,v\in B{\setminus}\{1\}}\), where CG(v) is repeated k times, then G is nilpotent of class bounded in terms of k and |C| only. It is also proved that if B is abelian of rank at least three and CG(b) is nilpotent of class at most c for every \({b \in B{\setminus}\{1\}}\), then G is nilpotent of class bounded in terms of c and |C|. The proofs are based on results on graded Lie rings with many commuting components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.