Abstract

Forensic evaluation of crime scenes normally involves examination of textile fibers, to find out the association between an individual and a crime scene, or between a suspect and a victim. The forensic samples normally include a mix of various types, sizes (micro to nano - scale) and shapes of natural and synthetic fibers, which are very difficult to differentiate/identify. Various sophisticated analytical instruments are being used to carry out the examination of these fibers. They involve various microscopy and spectroscopy based techniques, most of which are very complex and highly sensitive. Further, they may require a series of sample preparation steps to get high selectivity and are highly time consuming. Here we report a fluorescence microscopy based synthetic (plastic) fiber detection method using Nile Red (NR) dye, which provides high selectivity for synthetic fibers. The methodology involves the use of NR dye which selectively stains the fibers collected on filter papers following separation from samples/soils and water. The selectivity of NR towards the fibers is due to their non-polar property. Binding with NR makes the fibers fluoresce when viewed under a fluorescence microscope. This selectivity of NR for fibers makes the identification of fibers lot easier and less timeconsuming in forensic samples when compared to the more commonly used optical microscopy (where the presence of naturally-occurring substances of similar size can result in more errors). The paper will discuss optimisation of various parameters and method validation for detection of synthetic fibers and microplastics from soil samples. As an example, our method has shown to provide distinct clarity for the analysis of microfibers. The potential for the application of the method for faster forensics analysis will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.