Abstract

In this paper, we propose an efficient algorithm to directly restore a clear image from a hazy input, which can be adapted for nighttime image dehazing. The proposed algorithm hinges on a trainable neural network realized in an encoder–decoder architecture. The encoder is exploited to capture the context of the derived input images, while the decoder is employed to estimate the contribution of each input to the final dehazed result using the learned representations attributed to the encoder. The constructed network adopts a novel fusion-based strategy which derives three inputs from an original input by applying white balance (WB), contrast enhancing (CE), and gamma correction (GC). We compute pixel-wise confidence maps based on the appearance differences between these different inputs to blend the information of the derived inputs and preserve the regions with pleasant visibility. The final clear image is generated by gating the important features of the derived inputs. To train the network, we introduce a multi-scale approach to avoid the halo artifacts. Extensive experimental results on both synthetic and real-world images demonstrate that the proposed algorithm performs favorably against the state-of-the-art dehazing for nighttime images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.