Abstract
Night-time warming is vital for human production and daily life. Conventional methods like active heaters are energy-intensive, while passive insulating films possess restrictions regarding space consumption and the lack of heat gain. In this work, a nanophotonic-based night-time warming strategy that passively inhibits thermal radiation of objects while actively harnessing that of atmosphere is proposed. By using a photonic-engineered thin film that exhibits high reflectivity (~0.91) in the atmospheric transparent band (8–14 μm) and high absorptivity (~0.7) in the atmospheric radiative band (5–8 and 14–16 μm), temperature rise of 2.1 °C/4.4 °C compared to typical low-e film and broadband absorber is achieved. Moreover, net heat loss as low as 9 W m−2 is experimentally observed, compared to 16 and 39 W m−2 for low-e film and broadband absorber, respectively. This strategy suggests an innovative way for sustainable warming, thus contributes to addressing the challenges of climate change and promoting global carbon neutrality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.