Abstract
Canalicular glutathione secretion provides the major driving force for bile acid-independent bile flow (BAIF), although the pathways involved are not established. The hypothesis that GSH efflux proceeds by a route functionally distinct from the high-affinity, low-capacity, mrp2-mediated pathway was tested by using perfused rat liver and three choleretic compounds that modify biliary secretion of GSH (the dihydropyridine nifedipine and organic anion probenecid) or GSSG [sodium nitroprusside (SNP)]. Whereas nifedipine (30 microM) stimulated GSH secretion and blocked SNP-stimulated GSSG efflux and choleresis, SNP (1 mM) was ineffective against nifedipine-stimulated GSH efflux or BAIF, suggesting that most GSSG exits through a GSH-inhibitable path independent of high-affinity GSSG/glutathione conjugate transport. Three observations support this proposal. SNP, but not nifedipine, significantly inhibited bromosulfophthalein (BSP, 1 microM) excretion. Probenecid (1 mM) blocked resting or nifedipine-stimulated GSH secretion but only weakly inhibited BSP excretion. Glutathione, but not BSP, efflux capacity was reduced following partial hepatectomy. We suggest GSH efflux is mediated by a high-capacity organic anion pathway capable of GSSG transport when its high-affinity route is saturated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Gastrointestinal and liver physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.