Abstract

Benzaldehyde is one of the most important and versatile organic chemicals for industrial applications. This study explores a milder approach for the fabrication of NiFe2O4 nanoparticles (NPs) for use as a catalyst in the selective oxidation of benzyl alcohol to benzaldehyde. A co-precipitation method coupled with hydrothermal aging has been adopted to synthesize NiFe2O4 NPs in the absence of any additive. Different techniques such as electron microscopy, diffractometry, and photoelectron spectroscopy have been used to characterize the products. The results showed that the synthesized NiFe2O4 NPs are spherical, pure, and highly crystalline with sizes below 12 nm possessing superparamagnetic behaviour. The catalytic activity of the synthesized NiFe2O4 NPs has been assessed in the selective oxidation of benzyl alcohol under ambient reaction conditions. A conversion of 85% benzyl alcohol with 100% selectivity has been attained with t-butyl hydroperoxide at 60 °C in 3 h. With the optimized reaction conditions, the generality of the newly developed protocol has been expanded to a wide array of substituted benzyl alcohols with good performance. The NiFe2O4 nanocatalysts are magnetically separable and are reusable up to five cycles without loss of catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.