Abstract
Abstract Magnetic nanoparticles (MNPs) have attracted extensive interest in recent years because of their unique magnetic, electronic, catalytical, optical, and chemical properties. Lately, research on bimetallic MNPs based on nickel and copper (NiCu MNPs) gained momentum owing to their desired properties for use in biomedicine, such as their chemical stability, biocompatibility, and highly tunable magnetic properties by means of synthesis parameter tuning. The general interest of using NiCu MNPs in biomedical applications is still low, although it is steadily increasing as can be deduced from the number of related publications in the last years. When exposed to an alternating magnetic field (AMF), superparamagnetic particles (such as NiCu MNPs) generate heat by relaxation losses. Consequently, magnetic hyperthermia in cancer treatment seems to be their most promising application in medicine, although others are emerging as well, such as their use to guide potent drugs to the targeted site or to prolong their localization at a desired site in the body. This review is the first, to the best of our knowledge, that covers the available knowledge related to the preparation of NiCu MNPs using different methods, their resulting properties, and the already developed functionalization methods and that discusses everything mentioned in relation to their possible applicability in biomedicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.