Abstract
Recent studies have implicated the involvement of Ca2+-dependent mechanisms, in particular, calcium/calmodulin-protein kinase II in nicotine-induced antinociception using the tail-flick test. The spinal cord was suggested as a possible site of this involvement. The present study was undertaken to investigate the hypothesis that the beta2 nicotinic receptor subunit plays a central role in nicotine-induced spinal antinociception via calcium/calmodulin-dependent calmodulin protein kinase II activation. The antinociceptive effects of i.t. nicotine in the tail-flick test did not significantly differ in wild-type and alpha7 knockout (KO) animals but were lost in beta2 knockout mice. When calcium/calmodulin-dependent calmodulin protein kinase II activity in the lumbar spinal cord after acute i.t. administration of nicotine was investigated in wild-type and beta2 and alpha7 knockout mice, the increase in calcium/calmodulin-dependent calmodulin protein kinase II activity was not significant reduced in alpha7 KO mice but was eliminated in the beta2 KO mice. In addition, L-type calcium channel blockers nimodipine and verapamil but not the N-methyl-D-aspartate antagonist MK-801 (dizocilpine maleate) blocked the increase in the kinase activity induced by nicotine. Taken together, these results are consistent with the hypothesis that increases in intracellular calcium result in activation of calcium-mediated second messengers in the spinal cord that play an important role in nicotine-induced antinociception as measured in the tail-flick test. Furthermore, our findings indicate that nicotinic stimulation of beta2-containing acetylcholine nicotinic receptors in the spinal cord can activate calcium/calmodulin-dependent calmodulin protein kinase II and produce nicotinic analgesia, which may require L-type calcium voltage and gated channels but not the intervention of glutamatergic transmission.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Pharmacology and Experimental Therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.