Abstract

Although the dentate gyrus is one of the primary targets of septo-hippocampal cholinergic afferents, relatively little is known about the cholinergic physiology of neurons in the area. By combining whole cell patch-clamp recording with brief local application of exogenous agonists in horizontal slices, we found that there is robust expression of functional somatic alpha 7-containing nicotinic acetylcholine receptors (nAChRs) on molecular layer interneurons, hilar interneurons, and the glutamatergic mossy cells of the dentate hilus. In contrast, the principal neurons of the dentate gyrus, the granule cells, are generally unresponsive to focal somatic or dendritic application of ACh in the presence of atropine. We also demonstrate that cholinergic activation of alpha 7-containing nAChRs on the subgranular interneurons of the hilus can produce methyllycaconitine-sensitive GABAergic inhibitory postsynaptic currents (IPSCs) in nearby granule cells and enhance the amplitude of an electrically evoked monosynaptic IPSC. Further, activation of alpha 7-containing nAChRs on subgranular interneurons that is timed to coincide with synaptic release of glutamate onto these cells will enhance the functional inhibition of granule cells. These findings suggest that a complex interplay between glutamatergic afferents from the entorhinal cortex and cholinergic afferents from the medial septum could be involved in the normal regulation of granule cell function. Such a relationship between these two afferent pathways could be highly relevant to the study of both age-related memory dysfunction and disorders involving regulation of excitability, such as temporal lobe epilepsy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call