Abstract
Nicotine stimulation of cortical neurons obtained from gestation day 19 rats provoked a dose-dependent release of aspartate, glutamate, glycine and GABA, indicating a functional role for the nicotinic receptor in this model. This release was exclusively Ca2+-dependent (vesicular release) in the case of aspartate and dual Ca2+-dependent and Ca2+-independent) for glutamate, glycine and GABA. Nicotine also raised the membrane potential and the intracellular calcium concentration. These effects were specific, since they were reversed by hexamethonium, an antagonist of the nicotinic receptor. It was shown that L, N, and P/Q type Ca2+ channels are involved in nicotine-mediated Ca2+ entry into cortical neurons. Evaluation of the effects of nicotine on Ca2+ entry in isolated cells showed that 100% of the cells responded to nicotine, although the intensity of the response was variable: 63% of the neurons showed an increase in intracellular Ca(2+) of 152 +/- 5 grey levels, 25% of 88 +/- 12 grey levels and 12% of 48 +/- 1 grey levels. Tetrodotoxin, which blocks voltage-dependent Na(+) channels, completely reversed nicotine-induced Ca2+ entry into single cells. This suggests that the Ca2+ increment is mediated by opening of Ca2+ channels and not by the nicotinic receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.