Abstract

Activation of nicotinic acetylcholine receptors (nAChRs) by systemic nicotine enhances sensory-cognitive function and sensory-evoked cortical responses. Although nAChRs mediate fast neurotransmission at many synapses in the nervous system, nicotinic regulation of cortical processing is neuromodulatory. To explore potential mechanisms of nicotinic neuromodulation, we examined whether intracellular signal transduction involving mitogen-activated protein kinase (MAPK) contributes to regulation of tone-evoked responses in primary auditory cortex (A1) in the mouse. Systemic nicotine enhanced characteristic frequency (CF) tone-evoked current-source density (CSD) profiles in A1, including the shortest-latency (presumed thalamocortical) current sink in layer 4 and longer-latency (presumed intracortical) sinks in layers 2-4, by increasing response amplitudes and decreasing response latencies. Microinjection of the MAPK kinase (MEK) inhibitor U0126 into the thalamus, targeting the auditory thalamocortical pathway, blocked the effect of nicotine on the initial (thalamocortical) CSD component but did not block enhancement of longer-latency (intracortical) responses. Conversely, microinjection of U0126 into supragranular layers of A1 blocked nicotine's effect on intracortical, but not thalamocortical, CSD components. Simultaneously with enhancement of CF-evoked responses, responses to spectrally distant (nonCF) stimuli were reduced, implying nicotinic "sharpening" of frequency receptive fields, an effect also blocked by MEK inhibition. Consistent with these physiological results, acoustic stimulation with nicotine produced immunolabel for activated MAPK in A1, primarily in layer 2/3 cell bodies. Immunolabel was blocked by intracortical microinjection of the nAChR antagonist dihydro-β-erythroidine, but not methyllycaconitine, implicating α4β2*, but not α7, nAChRs. Thus activation of MAPK in functionally distinct forebrain circuits--thalamocortical, local intracortical, and long-range intracortical--underlies nicotinic neuromodulation of A1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.