Abstract

Although in vitro studies have shown that nicotinic acid inhibits some aspects of the inflammatory response, a reduced number of in vivo studies have investigated this activity. To the best of our knowledge, the effects induced by nicotinic acid in models of nociceptive and inflammatory pain are not known. Per os (p.o.) administration of nicotinic acid (250, 500 or 1000mg/kg, −1h) inhibited the first and the second phases of the nociceptive response induced by formalin in mice. Nicotinic acid (250 or 500mg/kg, −1 and 3h) also inhibited the mechanical allodynia induced by carrageenan in rats, a model of inflammatory pain. However, in a model of nociceptive pain, exposure of mice to a hot-plate, nicotinic acid was devoid of activity. In addition to inhibiting the nociceptive response in models of inflammatory pain, nicotinic acid (250 or 500mg/kg, p.o., −1 and 3h) inhibited paw edema induced by carrageenan in mice and rats. Picolinic acid (62.5 or 125mg/kg, p.o., −1h), a nicotinic acid isomer, inhibited both phases of the nociceptive response induced by formalin, but not paw edema induced by carrageenan in mice. The other nicotinic acid isomer, isonicotinic acid, was devoid of activity in these two models. In conclusion, our results represent the first demonstration of the activity of nicotinic acid in experimental models of nociceptive and inflammatory pain and also provide further support to its anti-inflammatory activity. It is unlikely that conversion to nicotinamide represents an important mechanism to explain the antinociceptive and anti-inflammatory activities of nicotinic acid. The demonstration of new activities of nicotinic acid, a drug that has already been approved for clinical use and presents a positive safety record, may contribute to raise the interest in conducting clinical trials to investigate its usefulness in the treatment of painful and inflammatory diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.