Abstract

Cigarette smoke (CS) is the most important source of preventable morbidity and mortality in the United States. Recent clinical studies have suggested that, in addition to being a major cardiovascular risk factor, CS promotes the progression of kidney disease. The mechanisms by which CS promotes the progression of chronic kidney disease have not been elucidated. Here we demonstrate for the first time that human mesangial cells (MCs) are endowed with the nicotinic ACh receptors (nAChRs) alpha4, alpha5, alpha7, beta2, beta3, and beta4. Studies performed in other cell types have shown that these nAChRs are ionotropic receptors that function as agonist-regulated Ca(2+) channels. Nicotine induced MC proliferation in a dose-dependent manner. At 10 (-7) M, a concentration found in the plasma of active smokers, nicotine induced MC proliferation [control, 1,328 +/- 50 vs. nicotine, 2,761 +/- 90 counts/minute (cpm); P < 0.05] and increased the synthesis of fibronectin (50%), a critical matrix component involved in the progression of chronic kidney disease. We and others have shown that, in response to PKC activation, MC synthesize reactive oxygen species (ROS) via NADPH oxidase. In the current studies we demonstrate that PKC inhibition as well as diphenyleneiodonium and apocynin, two inhibitors of NADPH oxidase, prevented the effects of nicotine on MC proliferation and fibronectin production, hence establishing ROS as second messengers of the actions of nicotine. Furthermore, nicotine increased the production of ROS as assessed by 2',7'-dichlorofluorescein diacetate fluorescence [control, 184.4 +/- 26 vs. nicotine, 281.5 +/- 26 arbitrary fluorescence units (AFU); n = 5 experiments, P < 0.05]. These studies unveil previously unrecognized mechanisms that indict nicotine, a component of CS, as an agent that may accelerate and promote the progression of kidney disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.