Abstract

Cytochrome P450 1A1 (CYP1A1) is a member of a subfamily of enzymes involved in the metabolism of both endogenous and exogenous substrates and the chemical activation of xenobiotics to carcinogenic derivatives. Here, the effects of nicotine, a major psychoactive compound present in cigarette smoke, on CYP1A1 expression and human hepatocellular carcinoma (HepG2) cell proliferation were investigated. Nicotine stimulated CYP1A1 expression via the transcription factors, activator protein 1, nuclear factor-kappa B, and the aryl hydrocarbon receptor (AhR) signaling pathway. Pharmacological inhibition and mutagenesis studies indicated that p38 mitogen-activated protein kinase, as well as RelA (or p65), mediated the upregulation of CYP1A1 of nicotine in HepG2 cells. The antioxidant compound, N-acetyl-cysteine, abrogated nicotine-activated production of reactive oxygen species and inhibited CYP1A1 expression by nicotine. Furthermore, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was inhibited by diphenyleneiodonium (an NADPH oxidase inhibitor). Thus, these results demonstrated that AhR played an important role in nicotine-induced CYP1A1 expression. Additionally, liver hepatocellular carcinoma HepG2 cells treated with nicotine exhibited markedly enhanced proliferation via CYP1A1 expression and Akt activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.