Abstract

Nicotine, a nicotinic acetylcholine receptors (nAChRs) agonist, has a role in modulation of the neurotransmitter release following nerve stimulation in both the central and peripheral nervous systems. The aim of this study was to determine whether electrical field stimulation (EFS)-evoked contractions are altered in rabbit bladder in the presence of nicotine and, if an alteration occurs, to investigate the effects of nitric oxide and prostaglandins on nicotine-induced alternation in isolated rabbit bladder. EFS-evoked contractile responses from rabbit bladder obtained were recorded with isometric force displacement transducers. Nicotine was added to preparations at various concentrations. The effects of hexamethonium, cadmium (Cd 2+), indomethacin and N-nitro- l-arginine methyl ester (L-NAME) were tested on the EFS-evoked contractions in the presence of nicotine. Nicotine led to a dose-dependent increase in the amplitude of the EFS-evoked contractile responses. Cd 2+ and hexamethonium inhibited the nicotine-induced increase in EFS-evoked responses, whereas indomethacin and L-NAME had no effect. In conclusion, nicotine increased the EFS-evoked contractile responses possibly by facilitating release of neurotransmitters from nerve terminals by a mechanism dependent on the influx of Ca 2+ from voltage-gated Ca 2+ channels (VGCCs) via activation of nAChRs in isolated rabbit bladder. Nitric oxide and prostaglandins do not have a physiological role in the regulation of neurotransmitter release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.