Abstract

Nicotine, the addictive component of tobacco, has bivalent rewarding and aversive properties. Recently, the lateral habenula (LHb), a structure that controls ventral tegmental area (VTA) dopamine (DA) function, has attracted attention as it is potentially involved in the aversive properties of drugs of abuse. Hitherto, the LHb-modulation of nicotine-induced VTA neuronal activity in vivo is unknown. Using standard single-extracellular recording in anesthetized rats, we observed that intravenous administration of nicotine hydrogen tartrate (25–800 μg/kg i.v.) caused a dose-dependent increase in the basal firing rate of the LHb neurons of nicotine-naïve rats. This effect underwent complete desensitization in chronic nicotine (6 mg/kg/day for 14 days)-treated animals. As previously reported, acute nicotine induced an increase in the VTA DA neuronal firing rate. Interestingly, only neurons located medially (mVTA) but not laterally (latVTA) within the VTA were responsive to acute nicotine. This pattern of activation was reversed by chronic nicotine exposure which produced the selective increase of latVTA neuronal activity. Acute lesion of the LHb, similarly to chronic nicotine treatment, reversed the pattern of DA cell activation induced by acute nicotine increasing latVTA but not mVTA neuronal activity. Our evidence indicates that LHb plays an important role in mediating the effects of acute and chronic nicotine within the VTA by activating distinct subregional responses of DA neurons. The LHb/VTA modulation might be part of the neural substrate of nicotine aversive properties. By silencing the LHb chronic nicotine could shift the balance of motivational states toward the reward.This article is part of the special Issue on ‘Neurocircuitry Modulating Drug and Alcohol Abuse'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call